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Abstract-This paper describes the basic principles and physical modelling of systems based on the ohmic 
heating of liquids by passage of mains frequency electric current through the liquid itself, in order to heat 
it on a continuous flow regime. Preliminary numerical results for non-Newtonian fluids of Herschel- 
Bulckley type (Carbopol940) are presented and the effect of natural convection, and shear and temperature 

dependence are emphasized. 

1. INTRODUCTION 

IN MANY industrial processes one is confronted with 

heating of very viscous poor conducting fluids or fluids 
with complex thermorheological behaviours such as 
non-Newtonian fluids. Non-Newtonian fluids are 
those which have a non-linear relationship between 
shear stress 7 and shear rate y. These fluids are widely 
used in daily life. Plastic is one of the products that in a 
melt state shows a strong non-Newtonian behaviour. 
It is reported [l] that the annual consumption of plas- 
tic in the United States of America has increased from 
4.5 to 20 billion kilograms in a period of 16 years 

between 1962 and 1979. Polymer solutions are another 
type of non-Newtonian fluids. They are present in 
toothpaste, cosmetic make-up, aerosols, paints, auto- 
mobile polishes and different pharmaceutical and 
household products. They are also used as thickening, 

suspending and stabilizing agents for food products. 
The worldwide use of non-Newtonian fluids is con- 
stantly increasing, therefore it is important to under- 
stand their transport behaviour, especially with regard 
to their heating and cooling. They are, in general, 

highly thermodependent and their behaviour varies 
drastically with the shear stress imposed on them by 
their environment. Therefore novel heating tech- 
niques which require less agitation of the fluid and 
also avoid local extra heating are strongly desired in 
non-Newtonian fluid processing. Most heating tech- 

niques used in industrial applications, however, are 

indirect, in which heat is applied to a contact surface, 

then it is transferred to the fluid by conduction, con- 
vection or radiation mechanisms. Other alternatives 
such as heating by a condensing steam are also com- 
mon practice. Nevertheless, these techniques quite 
often fail to satisfy certain operational requirements 
such as preservation of the quality of the fluid or 
avoiding overheating and burning. 

Overheating of poor conducting liquids adjacent to 

hot surfaces cannot only cause burning or degradation 
of the liquids, but it is at the origin of heat exchanger 
fouling. Furthermore, in the classical hot surface heat- 

ing method, the heating capacity of the system is 
restricted by the available surface area of the heat 
exchanger. Condensing steam heating used in steril- 
izing processes also has the disadvantage of additive 
water which has to be removed after the process. The 
additive water often changes the taste of the food 
product after sterilization (for example, in the case of 
chocolate) and water removal consumes extra energy, 
and hence is a more costly process. 

An alternative method to obviate the basic diffi- 

culties of heating by heat conduction from a hot sur- 
face heat exchanger is the direct resistance or ohmic 
heating [2, 31. It consists of causing an electric current 
to flow directly in the flowing media between a pair 
of electrodes. This technique can be applied to 
liquids containing free ions, and therefore which are, 
electric conductors. Different ions present in the liquid 

start to move once the liquid is under the influence of 
an alternating electric field. This permanent movement 
of ions is accompanied by a heat release in the liquid 

bulk that can be formulated by the Joule law. In this 
manner, direct resistance bulk heating offers a major 
advantage in comparison to the conventional heating 
methods for viscous, poor thermal conducting liquids 
or particulates. It should be emphasized here that we 
are not concerned with increasing, as is generally the 

case, the heat transfer coefficient between the hot wall 
and the fluid flowing on it. Here. we are interested in 

a totally different technique, which consists of heating 
every fluid element in the place where it is, therefore 
the heat transfer between the hot wall and the fluid is 
irrelevant as there is no hot wall at all. This is the 
basic difference between an ohmic heating device, as 
we describe it here, and all other devices classified 
under ‘heat exchangers’, including those which elec- 
trically heat the fluids. In situ and laboratory exper- 
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NOMENCLATURE 

A channel aspect ratio (length to width ratio) 
u mean thermal diffusivity of fluid [m’ s ‘1 

C/l constant pressure specific heat [J kg ’ 
K ‘I 

DiDt total derivative _’ 

,; 

electric field [V m - ‘1 
electric force [N] 

LI spanwise velocity component [m s ‘1 
U electric potential [V] 
UC) potential difference [V] 

; streamwise velocity component [m s ‘1 
velocity vector [m s ‘1 

Y,,, mean streamwise velocity [m s- ‘1. 

g gravitation acceleration [m s- ‘1 
Gr Grashof number 
H electrode length [m] 
I current intensity [A] 
1 inter-electrode distance [m] 

P pressure [Pa] 
Pe Peclet number 
Pr Prandtl number 
Re Reynolds number 
Ri Richardson number 
f time [s] 
T temperature [K] 

T, temperature at the entrance to the channel 

IK] 
r, temperature at the channel exit section [K] 
TO reference mean temperature [K] 

Greek symbols 

B expansion coe~cient of fluid at constant 
pressure 

’ strain rate [s- ‘] 
: Laplacian operator 

: 
electric permitivity [C V ’ m”’ ‘1 
thermal conductivity [W m- ’ K- ‘1 

/1 viscosity [kg m -- ’ s- ‘1 
I’ kinematic viscosity [m’ s- ‘1 

P specific mass [kg m ‘J 

PC free charge density [C rn. ‘1 
(r electric conductivity [S rn-- ‘1 

6 
viscous stress tensor 
gradient 

V. divergence 

VX curl. 

iments have proved the efficiency of the ohmic heating 
method. A review of the industrial applications of 
ohmic heating can be found in ref. [4]. 

the numerical results. Its description has been 
reported elsewhere [3]. 

From the fundamental point of view, direct resist- 
ance heating of liquids is a complex physical problem 
in which a strong interaction of heat transfer, hydro- 
dynamic and electric phenomena can be observed [4]. 
In fact the thermophysica1 properties of the liquid in 
flow are functions of temperature, and the tem- 
perature field in its turn depends on the residence time 
in the system (in which the fluid is under the effect 
of the electric field), i.e. the flow field. In a realistic 
configuration in which there exists a velocity differ- 
ence between the fluid flowing in the core and the 
fluid flowing close to the wall (boundary layer), the 
resultant temperature gradient can generate a free 
convection flow superimposed on the main stream. 
The effect of natural convection can appear as an 
accelerated flow field adjacent to the electrodes for a 
vertical channel. Interdependence between the ther- 
mal, hydrodynamic and electric fields is completed by 
the temperature dependence ofelectric conductivity of 
the working fluid. A realistic analysis of the problem 
should take into account this interdependence and its 
consequences. 

2. THE PHYSICAL MODEL 

The equations governing the conservation of mass, 
momentum, energy and the electrostatic equations for 
an incompressible fluid can be written in their general 
form as follows [5] : 

Equation ~$‘conservation of’mass 

V*V=O. (1) 

Equation qf the conservation of momentum 

(2) 

where 

To analyse the problem of ohmic heating of liquids 
we have developed a physical model for formulation 
of the problem and derivation of the equations which 
govern the phenomenon. The equations are then 
numerically solved. An experimental apparatus is also 
specifically designed and constructed for validation of 

and fe is a body force due to the electric field. The 
electric body force is composed of different parts and 
can be written as 

In the expression of the electric force the term p,E 
represents the force per volume on the fluid due to the 
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action of the electric field on the free charges of density 
pe. This term is the dominant part of the electro- 
hydrodynamic force in the presence of a continuous 
electric field acting on a conducting fluid or solid. 

The term - !E’~E is due to the action of the electric 
field on electric dipoles (forces of polarization) when 
the electric permitivity is not uniform. This term is 
generally negligible in comparison with the previous 
term and becomes considerable only if an alternative 
electric field acts on a dielectric liquid. 

The term - g( ~~E~~~&~~~)~) represents the effect of 
ele~trostriction~ and can be absorbed in the pressure 
term of the momentum equation. For the case of an 
incompressible fluid this term is negligible. 

From equation (2) we note that the hydrodynamics 
of the problem can be influenced by the electric force 
2 and the temperature field. In fact, the temperature 
dependence of the thermophysical properties of the 
liquid can cause bouyancy effects superimposed on 
the main ffow and, as we will observe later, cause a 
mixed convection phenomenon. 

~q~~t~on of the conservation of energy 
Taking into consideration the viscous and electric 

dissipation, one can write the equation of the con- 
servation of energy as 

pc,g= V+l~T)+oE2+z:b’. (4) 

We observe that the coupling between heat transfer 
and the hydrodynamic of the problem is through the 
nonlinear transport term and the viscous dissipation 
term while the coupling between electric and heat 
transfer is secured by the electric dissipation source 
term. 

Electric equation 
The electrostatic equations for a linear ohmic 

dielectric are 

where 

V*(&) = & (5) 

VxE=Q (6) 

v.@+$+) (7) 

(8) 

We restrict ourselves here to a rectangular cell in 
which two opposite walls constitute the electrodes, 
and the electrode width is large compared with the 
distance separating them. We consider an ascending 
flow between two vertical parallel plates. In this case 
the pertinent spatial variables are the abscissa x per- 
pendicular to the electrodes and the ordinate y point- 
ing in the flow direction, and the momentum equation 
resulting from equation (I) can be written as 

( a24 au au 
p _Li;+uax+vT& ) =-g+g 2/g ( 1 

( au au au p Qu~+vy 
> 

ap 
= ---pg ay 

or in a more explicit form 

( 

au au au 
p -g+u~+v$y 

) 
ap 

=-I& 

In the case of an ionic liquid, we keep only the term 
&of the electric forceye given by equation (3). Below 
we shall determine the expression for this electric 
force. Equation (5) can be written as 

and equations (7) and (8) give 

Vqk+ $T&vT+ $(p.) = 0. (14) 

By substracting equation (14) from equation (13) we 
obtain 

Using the relation rO = s/a and by multiplying the 
equation (15) by E, we have 

r,+,)fPe = (&,,;)&eT. (16) 

Equation (16) is in fact a differential equation describ- 
ing the variation of free charge density pe of a fluid 
element moving with velocity 3. This equation in pe 
yields the solution 
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PC = (&$.07+Ce l.7” (17) 

in which C is a constant. 
In general, and particularly in our case, the charac- 

teristic time for free charge relaxation is very small 
(7, = 3. IO-‘), in such a way that we have 

p, = (g-,,$.,T. (18) 

Then the electric force becomes 

It should be noted that this force vector is colinear 

with Band therefore has two components, ft., and,f,,. 

is perpendicular to the electrode surface and its effect 

is to bring the fluid elements towards it, and 

is parallel to the electrode. 
By taking into consideration the equation of the 

conservation of mass (l), and assuming a weak vari- 

ation of viscosity, the coupled system of equations 

becomes 

v-5=0 

/_I? = -VP-pg+V*(p(T)VV)+~ 

V*(-a(T)VU) = 0. (22) 

This system of equations should be solved in con- 
junction with the hydrodynamic, thermal and electric 
boundary conditions. They can be in the form of 
prescribed velocity, temperature and electric poten- 
tial, or thermally and electrically isolated boundaries. 

Non-dimensional equations 
For non-dimensionalizing the equations, we use 

interelectrode distance 1 and mean velocity V,,, as 
characteristic length and velocity, respectively. In 
order to treat the free convection problem we use 
the Boussinesq approximation, i.e. the fluid density is 
constant and equal to p,, everywhere except in the 
bouyancy force term. p0 is the fluid density at the 
mean temperature T, defined as 

T 

0 

= (T,+TJ 
2 (23) 

In the equation of motion, the variable p is in fact 

the hydrostatic pressure difference. The pressure P is 
then given by 

p = P- PUgY. (24) 

We have, therefore, 

?P 
* 

-,px=R(Po-P)-;$. (25) 

The coefficient of thermal dilatation at constant pres- 

sure p is given by 

or 

1 V-V, 
B=, T-7. 

( > 0 

It can also be expressed in terms of density as 

(26) 

(27) 

or 

PO-P = BPo(T- To). (29) 

This gives rise to a linear variation of the density with 

temperature 

P = Po[l -PU- T”)l. 

The relations (25) and (30) give 

(30) 

i3P -g-“=&(T-T”)-g. (31) 

By developing the equations of motion, we have 

= 

+&~)+(~-T,~;)E~~ (32) 

+lip,g(T-7,)f(~-i,~)E’~. (33) 

By choosing the other thermophysical properties of 

the fluid at the reference temperature T, = (T, + T,)/2 
and denoting them as A0 = /1(T,), p. = p(T,,), 
u,, = a(T,), a0 = a(T& and p,, = p(T,), we can define 
the dimensionless variables and parameters as 

x*=X. 
1’ 

,*=-v. 
I’ 

t*=I:_: 
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(34) 

Q,* = 
Ql 

poc,ATV,’ 
Re=C”I; 

VO 

Pr=VO; Pe=Pr*Re; Gr= 
M’(Ts - T,) 

4 4 

Ri=!!_ Bgul. A=:; 
Re’ - pOc,, VA ’ 

Gr,, = (&-~o&)poE~%T12 ; Ri,, = 2. 

The complete system of equations, i.e. equations of 
motion, energy and electrostatic can then be written 
in the non-dimensional form as 

v.3* =fJ 

au* au* au* ap* i 
c?t*+U*d.r*+v*@i=-~+& ax* p ax* 

(“(*K) 

+ & (p*&))+&rg) 
au* au* au* ap 
D+u*p+v*p= -ay +&g*g) 

+ ;cT*(vu*)2+O* 

v*(-a*aJ*) = 0. (35) 

It is governed by five non-dimensional numbers (A, 
Re, Pe, Ri and Ri,,). Each represents the following 
characteristics of the system : 

-The aspect ratio, A, characterizes the geometry 
of the system. 

-The Reynolds number, Re, represents the ratio 
of inertial effects to the viscous effects. 

-The Peclet number, Pe, characterizes the ratio 
of heat transfer by convection to heat transfer by 
conduction. 

-The Richardson number, Ri, allows to evaluate 
the relative importance of the free convection due to 
the dissipation of electric energy to the forced con- 
vection. In fact Ri depends on the dissipated electric 
energy. Therefore this number reflects the coupling 
between electric and thermal phenomena. 

-Ri,, is a non-dimensional number analogous to 
the Richardson number. It is constructed from the 
ratio of two electric non-dimensional numbers, Gr,, 
equivalent to the Grashof number and the square of 
the Reynolds number. Gr,, characterizes the electro- 
convection regime. 

Given the complexity of the problem arising from 
the coupling between the different physical phenomena 
and due to the nonlinearity of the equations, we have 
restricted this investigation to a simple geometry 
which correspond also to some practical applications, 
and we have made some simplifying assumptions. 

Hypotheses and simpl$ed equations 
-As the first simplification, we have fixed the 

geometry to a channel flow preceded by a diffuser at 
the entrance and followed by a nozzle at the exit. The 
larger sides of the channel constitute the electrodes. 

-The working fluid is a Newtonian or non-New- 
tonian, incompressible ionic fluid for which we assume 
that the three terms of electric force are negligible. 
This assumption is justified by the fact that the electric 
field is alternating, therefore it is almost uniform in 
the volume and the volume density of the electric 
charge is null. 

-The flow speed is small, thus the viscous dis- 
sipation is negligible. 

-The thermophysical properties of the fluid (1, p, 
a) depend on the temperature T, except for the non- 
Newtonian fluids where 1 and p depend also on the 
shear rate according to the constitutive laws which 
shall be prescribed further. 

-The temperatue at the channel entrance T, is 
uniform. 

After the above assumptions, the system of equations 
to solve, in their compact form, reduce to 

v-5 = 0 

p; = -VP-pg+V*(p(T)fv) 

V*(-o(T)f%‘) = 0. (36) 

Therefore the system is governed by only four non- 
dimensional numbers (A, Re, Pe and Ri). 

Boundary conditions 
Boundary conditions corresponding to this inves- 

tigation are summarized in Fig. 1. It consists of 
hydrodynamic, thermal and electric boundary con- 
ditions. 

Hydrodynamic boundary conditions. They consist 
of: 

-no slip no penetration condition on the wall, i.e. 
u=a=o. 

-a velocity profile prescribed at the entrance to the 
system and assuming that beyond the fictive frontiers 
of the channel exit, the velocity does not vary. This 
condition can be formalized by au/an = au/an = 0. 
These boundary conditions of the homogeneous 
Neumann type have been naturally taken into account 
during the variational formulation of the problem. 
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Neumann homogonous on I(, v, T and W 

-A I 
dwdn=o 
u=v=o 
u=o 

J 

\ BWKNkB 
dT/&=O 
u=v=o 
U=UO 

X 

dU/dn = 0 
FIG. 1. Sign convention and boundary conditions in the 

computation domain. 

Thermal boundary conditions. We have imposed : 

-a uniform temperature distribution T, at the 
entrance; 

-a thermal insulation condition 6T/dn = 0 at the 
exit from the system as well as on all channel walls; 
including on the electrodes. The latter boundary con- 
dition is not generally valid. In this specific case it is 
justified based on the fact that the electrodes are glued 
on an insulating material on the back. We can then 
neglect the conductive heat flux in the normal as well 
as transverse directions on the electrodes. 

Eiectric boundary conditions. These consist of: 

-a null electric potential imposed on the electrode 
A; 

-an electric potential U0 imposed on the electrode 

3; 

and considering an electric insulation alJ/an = 0 on 
all other walls. 

Numerical techniques 

We have solved the above system of coupled equa- 
tions (36) subject to the mentioned boundary con- 
ditions, by a control volume code (ULISSE) 
developed in the Laboratoire National d’tiydro- 
dynamique of EDF. The code is designed to solve 
essentially the Navier-Stokes equations, with or with- 
out energy equation, in a two-dimensional geometry. 
It utilizes a fractional time step method of resotution 
which allows to define several ~mpu~tion steps and 
to use different numerical methods best adapted to 

each step [6]. A short description of the method fol- 
lows. 

If we approximate the time derivative by a finite 
difference of the first order as 

23 fi,,+ I _s,i 

(32 dt 

the algorithm for computation of velocity z+‘+ ’ at time 
P*’ from the velocity P known at time t” can be 
written in three steps 

q/_-3,1 = -.v$ia.dt (37) 

~__$?~_-~. !!“p .dt 
! > 

(38) 
P 

The sum of the three steps gives 

i40) 

Step I, called the convection step, in which equation 
(37) rewritten in a different form is solved by the 
method of characteristics [7]. In step II, designated as 
the diffusion step, equation (38) is solved by the 
method of conjugate residues, which results in an 
intermediate velocity. This velocity is the real velocity 
less the effect of pressure field. The same technique is 
used to solve the diffusion term in the energy equation 
and in the electric equation. In step III, named the 
pressure step, equation (39) combined with the equa- 
tion of continuity (div p+ ’ = 0) results in a Laplace 
equation which is solved by the method of conjugate 
residues. 

We have also developed a specific sub-program in 
order to take into account the potential electric equa- 
tion and to solve the globai system of equations. As 
a first case, we have solved the system of equations 
(36) in a rectangular geometry for the following 
boundary conditions 

-the two vertical walls representing the electrodes 
are the~aliy insufated. No slip and no penetration 
conditions for the velocity and a uniform potential 
difference (0 on one electrode and U, on the other 
one) are imposed on the electrode walls ; 

-at the channel inlet, temperature and velocity 
profiles are uniform and parabolic, respectively, and 
the entrance is electrically insulated ; 

-at the exit natural boundary conditions are 
assumed, that is homogeneous Neumann boundary 
condition for velocity and temperature. 

3. RESULTS AND DISCUSSION 

Before proceeding to the treatment of non-New- 
tonian fluids, we have solved equation (36) for a New- 
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tonian fluid, with thermophysical properties close to 

milk. This has been done to underline the basic charac- 
teristics of ohmic heating of liquids in a straight 
Poiseuille flow. For this purpose, temperature de- 
pendence of the thermophysical properties of the fluid 
are expressed by the following equations [8], which 
have been replaced in equation (36) 

p = 10~3*exp(1.842~10~S~T2-0.0258~T+6.318) 

p = 1037.(1-3-10~4-[T-273]) 

(T = 0.0483+0.012(T-298) (41) 

and the problem is solved for a uniform entrance 
temperature of 293 K. 

In Fig. 2 we have shown the velocity profile at the 
exit section of the channel for a Newtonian liquid with 
constant thermophysical properties (Fig. 2(a)) and 
also with temperature-dependent properties (Fig. 
2(b)) for numerical values of Pe = 4290, Re = 500, 
Ri = 1.3 and A = 2.5. In both cases the flow enters 
from the bottom to a vertical straight channel of rec- 
tangular cross-section. The velocity and temperature 
profiles at the channel entrance are parabolic and 
uniform respectively. It should be mentioned that in 
case 1 (a), free convection effects are absent since the 
liquid is a constant property fluid. In case (b), the 
flow acceleration close to the electrodes is due to the 
conjugate effects of free convection and reduced vis- 
cosity resulted from temperature dependence of the 
liquid. In order to evaluate the corresponding effect 
of p and p, variations on the flow acceleration close 
to the walls, one has to perform a parametric study. 

X [ml 
FIG. 2. Velocity profile at the exit section of the channel, 
(a) without the effect of natural convection, (b) with the 

effect of natural convection. 

312.5 - ,(a) 
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300.0 
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FIG. 3. Temperature profile at the exit section of the channel, 
(a) without the effect of natural convection, (b) with the 

effect of natural convection. 

It is evident that the variation of fluid properties (p 
and p) contribute in similar manners in this accel- 
eration and they are regrouped in the Richardson 
number. 

In the case of the temperature-dependent property 
liquid, the effect of natural convection due to differ- 
entially heated geometry is superimposed on the main 
flow. In fact, liquid particles get accelerated more in 
the region next to the electrodes due to the longer 
residence time in the channel and, therefore, higher 
increase in the temperature and decrease in the 
viscosity. The global effect of this mixed convection 
situation is to give a more uniform distribution of the 
velocity in the exit section compared with the constant 
property liquid. Figure 3((a) and (b)) shows the 
temperature profiles corresponding to the previous 
velocity profiles. In Fig. 3(b) the coupling between the 
hydrodynamic and heat transfer phenomena is quite 
evident. In fact, liquid acceleration close to the wall 
has reduced the residence time, and therefore 
decreased heating in this region. On the other hand, 
the flow slows down in the channel centre, therefore 
the residence time has been increased, hence more 
heating compared to the case of Fig. 3(a). The con- 
jugate effect causes a more uniform distribution of 
temperature at the channel exit, which is desired in 
the continuous heating processes of the very viscous 
liquids. 

In the following, we proceed to the treatment of 
non-Newtonian fluids with ohmic heating. As a model 
fluid we have chosen an aqueous solution of Carbopol 
940 of 0.05% weight concentration. Carbopol 940 is 



Carbopol940 
q 0.05% 

1 10 100 1C 

Shear rate { [i’] 

I 

FIG. 4. Rheogram of Carbopol 940 solution at 0.05% con- 
centration. 

a Bingham plastic shear-thinning fluid whose rheo- 
logical behaviour can be well expressed by the 

Herschel-Bulckley law [9, lo] 

T-TV =/l-1’“; t > T, 
i =O; z < z,, (42) 

in which z,, is the yield stress, which is the magnitude 
of the stress which must be exceeded before flow starts. 
In this model the apparent viscosity may be written 

p = ky-‘; with k = ame-“’ (43) 

with the numerical values of a = 0.113, b = 0.0146 
and n = 0.683 [9]. 

A rheogram of an aqueous solution of Carbopol 
940 of 0.05% concentration is shown in Fig. 4. 

In order to highlight the non-Newtonian behaviour 
of Carbopol 940, we have defined a fictitious New- 
tonian fluid with an average viscosity equal to the 
viscosity of the non-Newtonian fluid. We designate 
this fictitious fluid as ‘equivalent Newtonian’ fluid and 

we define its viscosity as 

p = a’emhT. (44) 

Also, in order to underline the effect of temperature 

dependence of the non-Newtonian fluid, we have 
defined a second fictitious non-Newtonian fluid hav- 
ing the same properties as Carbopol940 but lo-times 
more temperature-dependent than it. We have named 
it ‘thermodependent’ fluid, and we have defined its 
viscosity as 

p = a” * e mhT.j,rm’ ; with h’ = 106, (45) 

We have numerically solved equation (36) in con- 
junction with the above constitutive laws for the three 
fluids subject to the following numerical values of the 
nondimensional numbers : A = 2, Re = 0.84, 
Pe = 1256 and Ri = 73.5-84.3. The temperature rise 
between entrance and exit is 10°C and the mean flow 
velocity in the channel is 4.6 mm s ‘. 

The numerical code solves the set of equation (36) 
by an iterative procedure. In this procedure, we have 
used the local apparent viscosity following the 
Herschel-Bulckley law at each iteration. Then y is 
calculated and used to define p = ky”-’ for the next 

P l V l2qklat Nwnonim fhrid “.. 
q VNon-Nevadan fluid 

. l VHighIy~fluid 7 

Ol -20 -15 -10 -5 0 5 

x I-1 

FIG. 5. Velocity profile at the entrance and at the exit sections 
ofthe channel for the non-Newtonian, equivalent Newtonian 

and thermodependent fluids. 

iteration. The tests of convergence are performed on 

the values of velocity and temperature. We have 
observed some convergence difficulties for the non- 
Newtonian fluids of high concentration (Carbopol 

with concentrations higher than 0.2%). In all cases 
we have restricted our attention to the zones far from 
the yield stress, as this value was not experimentally 
determined. 

On Fig. 5 we have shown the velocity profile at the 
channel exit for the above three fluids, all with a 

parabolic velocity profile at the entrance. The first 
observation is that the velocity profile for the non- 
Newtonian fluid is flatter in comparison with the 

‘equivalent Newtonian’ fluid. The velocity profile is 
still flatter for the ‘thermodependent’ fluid. The same 
hierarchy of flatness prevails, in Fig. 6, for the tem- 
perature profiles at the exit, with a uniform tem- 
perature distribution at the entrance. 

In order to better understand the effects of shear 

Q T Equivalent Newtonian fluid 
l T Non-Newtonian fluid 
q T Highly themodependent fluid 

FIG. 6. Temperature profile at the entrance and at the exit 
sections of the channel for the non-Newtonian, equivalent 

Newtonian and thermodependent fluids. 
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q Bquivelent Newtoniao fluid 
+ Non-Newtonian fluid 

. Highly themodependent fluid 

FIG. 9. Viscosity variation in the channel span for the non- 
Newtonian fluid. x I=4 

FIG. 7. Viscosity variation in the channel span for the non- 
Newtonian. equivalent Newtonian and thermodependent 

fluids. 

maximum at the spanwise position of the inflection 
point of the velocity profile, implying that the shear 
dependence dominates the temperature dependence 
of this fluid. The viscosity, however, relaxes beyond 
this point and stays always below that of the other 
fluids in the channel core, meaning that the tem- 
perature dependence dominates the viscosity variation 
in this region. 

and temperature dependence of the non-Newtonian 
fluids on velocity profiles, we have plotted on Fig. 7 
the viscosity variation in the span at the exit plane of 
the channel for the three fluids. As it appears on 
this figure and also on Fig. 8, the viscosity of the 
‘equivalent Newtonian’ fluid varies mildly in the chan- 
nel span. On the contrary, for the case of non-New- 
tonian fluid (Fig. 9), under the conjugate effect of high 
temperature and high shear in the region close to the 
walls, the viscosity has diminished drastically there, 
giving rise to a singular point in the channel centre. 
On the other hand, the viscosity profile of the thermo- 
dependent fluid, as presented in Figs. 7 and 10, shows 
a triple peak behaviour, one in the centre and two 
symmetrically located close to the walls. In the region 
adjacent to the walls, the viscosity of the thermo- 
dependent fluid is always below that of the other two 
fluids. However, it is interesting to notice that it 
drastically increases, and eventually goes through a 

4. CONCLUSION 

In this paper we have described the basic physical 
phenomena and derived the system of equations 
governing ohmic heating of ionic fluids. By using a 
finite volume method, we have then numerically 
solved the system of equations, first for a Newtonian 
fluid, having thermophysical properties of milk. The 
equations are solved in a rectangular geometry 
assuming Poiseuille velocity profile and uniform tem- 
perature distribution at the channel entrance. The 
results show acceleration of the fluid close to the elec- 

l Highly thermedependent fluid 

. Equivalent Newmnian tluid 

FIG. 8. Viscosity variation in the channel span for the equi- 
valent Newtonian fluid. 

FIG. IO. Viscosity variation in the channel span for the 
thermodependent fluid. 



trodes, emphasizing the effect of residence time and 
mixed convection mechanism in the system. 

We have then solved the system of equations in 
conjunction with constitutive laws for three fluids, 4 
namely a non-Newtonian fluid following Herschel- 
Bulckley law, an ‘equivalent Newtonian’ fluid, and a 
highly ‘thermodependent’ non-Newtonian fluid. The 5 
results show clearly the equalizing effects, on the vel- 
ocity and temperature profiles, of shear and tern- 6 
perature dependence of the non-Newtonian fluids and 
also the competition between shear and temperature 7 

dependence effects. 
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